2019 IEEE/ACM Fourth International Parallel Data Systems Workshop (PDSW)

Towards Physical Design Management
in Storage Systems

Kathryn Dahlgren' Jeff LeFevre!

Aldrin Montana!

Peter Alvaro!

3

Ashay Shirwadkar? Ken lizawa

Carlos Maltzahn'

!University of California, Santa Cruz
{kmdahlgr, jlefevre, akmontan, palvaro, carlosm}@ucsc.edu

2University of California, Riverside
ashay.shirwadkar @email.ucr.edu

Abstract—In the post-Moore era, systems and devices with
new architectures will arrive at a rapid rate with significant
impacts on the software stack. Applications will not be able to
fully benefit from new architectures unless they can delegate
adapting to new devices in lower layers of the stack. In this
paper we introduce physical design management which deals
with the problem of identifying and executing transformations
on physical designs of stored data, i.e. how data is mapped
to storage abstractions like files, objects, or blocks, in order
to improve performance. Physical design is traditionally placed
with applications, access libraries, and databases, using hard-
wired assumptions about underlying storage systems. Yet, storage
systems increasingly not only contain multiple kinds of storage
devices with vastly different performance profiles but also move
data among those storage devices, thereby changing the benefit of
a particular physical design. We advocate placing physical design
management in storage, identify interesting research challenges,
provide a brief description of a prototype implementation in
Ceph, and discuss the results of initial experiments at scale
that are replicable using Cloudlab. These experiments show
performance and resource utilization trade-offs associated with
choosing different physical designs and choosing to transform
between physical designs.

Index Terms—storage systems, data processing, data manage-
ment, physical design

I. INTRODUCTION

During the past 25 years most speed-up was due to expo-
nential increases in clock speeds and transistor densities while
power increase remained small. Little was due to architectural
innovations which meant that little had to change in the
software stack. Performance improvement was implemented
almost entirely below the device level. Due to the demise of
Dennard Scaling and the imminent end of Moore’s Law, many
predict an era where performance improvement will be mainly
driven by architectural innovations [12]. The first harbingers
of this era are GPUs, TPUs, flash devices, and 3D XPoint
technology, all of which require significant changes in the
software stack to fully utilize their potential. In the near future
new devices are expected to emerge at a higher frequency
than today. Software stacks that require applications to be
significantly changed in order to benefit from architectural

978-1-7281-6005-4/19/$31.00 ©2019 IEEE
DOI 10.1109/PDSW49588.2019.00009

40

3Fujitsu Laboratories Ltd.
iizawa.ken @fujitsu.com

innovations will not be affordable. For stacks to become
feasible, they will have to move device-specific functionality
as close to devices as possible in order to isolate applications
from architectural changes.

In this paper we examine one such case of device-specific
functionality: physical design, a term used by the data man-
agement community to refer to a specification of how data
is mapped to storage abstractions such as files, blocks, or
objects. Currently, physical design resides in the application
or middleware layer where designers encoded assumptions
about storage devices, e.g. the assumption that large sequential
access is better than small random access. These assumptions
worked well during the long period where storage devices
were dominated by spinning media and physical design was
mostly dependent on workload patterns. With new storage
devices, these assumptions might or might not be adequate
depending on the underlying storage system. Furthermore,
storage hierarchies are deepening and provide multiple tiers
of storage, including spinning media, flash media, and non-
volatile memory. These tiers have vastly different performance
profiles. Thus, the benefit of a physical design might depend on
which tier the data is stored at any one time. The heterogeneity
of storage devices and the movement of data between storage
tiers along with diverse workloads require physical designs to
be managed: when workloads change, when data is moved
to new kinds of devices, whether due to tiering or storage
system upgrades, performance might significantly improve by
transforming the physical design of the data.

The heterogeneity of devices and the rapid arrival of new
kinds of devices suggests that physical designs should be
managed in storage systems, since that would isolate applica-
tions and middleware from the impact of storage architecture
changes. We identified two key enabling technologies: (1)
emerging computational storage technologies are making it
possible to carry out some data processing in the storage
layer [17]; and (2) embedding fast serialization libraries such
as FlatBuffers [23] and Apache Arrow [7] in a computational
storage layer and using them to store structured data will

allow physical design transformations that are transparent to
the application.

Note that physical design management leverages compu-
tational storage but is not subsumed by it: while physical
design management is executed in the computational storage
layer, it is orchestrated by storage clients (see Figure 2).
This arrangement relieves storage servers from having to keep
track of related data stored on other storage servers, greatly
increasing the ability of the overall storage system to scale
out.

Physical design transformations are potentially long-running
and costly and need to be based on careful consideration of
expected workloads, overall system load, and storage device
performance characteristics. We expect that their orchestration
creates an intriguing space for future research. Even if the
source and target physical designs are given, the design space
for transformations is large, including possible answers to the
following two important questions: (1) to create benefits of
a transformation as quickly as possible, what intermediate
steps should a transformation produce and make available
to production workloads, and (2) how many resources are
dedicated to achieving each of these steps relative to resources
available to applications (e.g., fast start can quickly cover a
working set, slow start can better hide impact on production
workloads).

Moving physical design management into storage requires
significant changes in the layers above, especially in data
access libraries and database management systems. However,
as it turns out, database management systems can be easily
adapted using “external/foreign table” facilities, which are plu-
gin infrastructures that allow the offloading of access methods
to storage systems. A welcome side-effect of offloading is
increased scalability because distributed storage systems are
generally easier to scale out than access libraries or database
management systems. The HDFS5 access library [2] also has
foreign table support with its Virtual Object Layer (VOL)
that similarly allows the offloading of access methods. The
contributions of this paper are:

1) the idea of and the case for physical design management
in storage systems,

the identification of research challenges,

a prototype implementation in Ceph, and

initial experiments at scale that are replicable using

CloudLab.

We will first introduce terminology related to physical
design management and then identify important research chal-
lenges in transformation identification and execution. We then
will provide a brief introduction to object storage and Ceph.
Then we describe how physical designs and transformations
are implemented in Ceph using its extensibility features and
internal object copying infrastructure. We then show per-
formance and resource utilization trade-offs associated with
choosing different physical designs and choosing to transform
between physical designs before detailing related and future
work.

2)
3)
4)

41

II. PHYSICAL DESIGN MANAGEMENT

Physical design is a particular mapping of a dataset to
storage devices (including secondary data such as metadata,
views, and indices). The physical design management problem
is identifying and executing a transformation of a physical
design of a dataset to another physical design in order to
reduce the access cost for a given workload without changing
the logical structure of the dataset. For example, transforming
row-structured tabular data into column-structured data can
reduce the processing cost by orders of magnitude [21] but
does not change the data’s logical structure.

We borrow terminology from the Visualization Toolkit’s
model [18] to define physical design management: the phys-
ical design of a dataset consists of topology and geometry,
where topology is the logical structure of the data invariant
under transformations of physical designs and geometry is a
particular mapping of that topology to storage devices. Using
this terminology, the physical design management problem is
identifying a transformation of a physical design geometry
in order to reduce the access cost for a given workload. To
illustrate the topology and geometry of a physical design,
consider a distributed storage system that stores data with
different forms and levels of redundancies (e.g. Reed-Solomon
(k = 3,m = 2)-erasure code or 3-way primary replication)
on multiple storage servers which contain multiple storage
devices of different tiers (e.g. flash and spinning media). In this
case, the geometry of a physical design consists of points in the
space of (redundancy, server, tier, device, allocation). Actual
storage systems might provide convenient abstractions to hide
some of that space or add different dimensions, as we will
see in Section III. Observe that physical design management
is not limited to modifying the set of indices for stored data
and is therefore more general than physical design funing, a
well-known term in the data management community.

Physical design management consists of identifying and
executing transformations. Physical design management iden-
tifies needed transformations by either applying user-specified
transformation policies (off-line) or actively examining work-
load performance (on-line). Physical design management ex-
ecutes transformations transparently from the perspective of
the application. Application workload accesses are adapted
to suit the available physical designs containing relevant
datasets. Depending on physical design management policies,
old designs are either deleted or kept for redundancy. Further-
more, transformations can be compositions of more elementary
transformations, some of which could be executed in parallel
and some of which could depend on others, i.e. a single
transformation can consist of a directed acyclic graph (DAG)
of transformations.

a) Transformation identification: consists of finding a
transformation that will not only solve a physical design
management problem but do so in an efficient way. The result
of transformation identification is a transformation plan in the
form of a DAG of transformations. For a simple example,
assume a row-structured table with 100 fields per row and a

workload with column-oriented access patterns. Thus, a trans-
formation of the row-structured table to a column-structured
table has very likely a beneficial impact on performance. One
could copy the table 100 times but write only the ith field of
each row to the target table. A more efficient way is to switch
the order of this “copy then filter” transformation plan to a
“filter then copy” plan so only the ith field of each row gets
copied instead of the entire row. Transformation identification
requires metadata to inform cost estimates for transformation
plans, e.g. if the table has only one field per row, there will
be no difference between “copy then filter” and “filter then
copy”’.

Research challenges: what performance characteristics would
signal that it would be worthwhile to transform the current
physical design? How can candidate transformation plans be
constructed and evaluated quickly before transforming any-
thing?

b) Transformation execution: consists of managing the

resources needed to complete the transformation and coor-
dinating workload access between the original data and the
transformed data such that there is a good trade-off between
transformation time and workload performance. The trans-
formation execution is guided by a transformation schedule
that informs the scheduler how many resources should be
allocated (e.g. how many parallel streams are available) for
executing a transformation plan, and when to make them
available. For example, a transformation schedule could make
only a few parallel streams available at the beginning to avoid
stealing too many resources from the workload, but, as the
transformation progresses and more of the workload benefits
from the new physical design, the transformation schedule can
shift more resources to the transformation. Another example
would be a transformation schedule that starts out with quickly
transforming a workload’s working set and then slowing down
transformations in order to minimize impact on workload
performance. In both examples, the metadata necessary for
creating a schedule in advance might not be available. In
those cases, we expect that physical design management will
determine a schedule in real time based on observed trans-
formation progress, workload behavior, as well as parameters
such as transformation duration targets or minimum workload
performance.
Research challenges: What is a good trade-off between trans-
formation time and workload performance? How can candidate
transformation schedules be constructed and evaluated quickly
(in case there is enough information to create a schedule in
advance)? What are the factors deciding whether the schedule
should capture the working set as fast as possible and then
slow down, or start slowly and speed up once workloads start
to benefit from the new physical design?

To provide the benefits of transformations to workloads as
early as possible, physical design management transparently
adapts workload accesses to across the different physical
designs containing relevant data even as the old design evolves
into the new design. For example, a workload accessing a
range of data may be serviced by physical design manage-

42

ment by combining the results derived from still-existing
row data with results derived from data that has already
been transformed to a column-structured physical design. For
this, physical design management needs to maintain metadata
indicating whether a particular access can be satisfied by
a completed part of the new physical design or whether it
has to still use the old physical design. One parameter of
transformation execution is the shape of increments at which
a new physical design becomes available.

III. OBJECT STORAGE

To investigate the design space of physical design man-
agement we chose object storage as the underlying storage
abstraction. Extensibility and scalability benefits, combined
with open source availability, industry-strength performance
and reliability, and wide use made Ceph an ideal basis for our
prototyping work. Object storage (also known as “object-based
storage”) was first proposed by Mesnier et al. in 2003 [16].
Object storage was created to overcome the bottleneck of file
servers that stood between clients and the full utilization of
block-based storage devices connected via a fast (and expen-
sive) storage-area network (SAN). Object storage overcomes
this bottleneck by splitting the traditional file system server
into (1) a file storage service with a flat name space where
files are called “objects” that never span more than one server
(except for redundancy), and (2) a metadata service which
overlays the flat object name space with the hierarchical name
space of POSIX file systems and stripes POSIX files across
multiple objects. This split allows clients to directly interact
with storage servers and move the metadata service out of
the bandwidth-intensive data path. While object storage was
designed in the context of file systems, object storage without
the file system component gained popularity in virtualized
environments because flat name spaces and the simple one-
to-one mapping of objects to servers made object storage easy
to scale out.

The widely-used open source Ceph storage system [24],
[25] (see ceph.com) introduces a reliable and self-healing
distributed object service called RADOS [26]. Ceph/RADOS
transparently distributes objects and their replicas over servers
by hashing object names. The hash function is provided by
Ceph/RADOS servers to clients so they can always calculate
the location of a given object. As Ceph/RADOS clusters
change due to server failures or other reasons, servers are
keeping clients up-to-date so that these changes do not impact
application-level access to objects. Applications can create or
delete objects and can call object methods such as reading
or writing. Objects do not have a fixed size but the ideal
size of objects in Ceph/RADOS is around 8MB due to trade-
offs between locality, parallelism, and locking overhead. Since
typical deployments of Ceph are in the range of 10s of
Petabytes, the total number of objects is in the billions. With
this many objects, enumerating them can become very costly,
especially in a flat name space.

The Ceph file system CephFS, the Ceph/RADOS block
device rbd, the AWS S3-compatible interface radosgw, and

other Ceph/RADOS applications use naming conventions that
allow applications to derive object names instead of having
to look them up. For example, data that can be accessed with
a coordinate system can be partitioned into objects according
to a partitioning function, using object names that represent
bounding boxes within that coordinate system. The combi-
nation of the partitioning function and the object convention
allows the generation of object names for any coordinates.
For the rest of the paper we will focus on Ceph/RADOS
as reference system and use its terminology. In principle,
our contributions can be applied to any object-based storage
system.

An object is created in the context of a pool that defines
resilience properties, such as the level of replication, and place-
ment rules for which devices to use and how to avoid placing
more than one replica of an object in a single failure domain.
Ceph/RADOS supports multiple pools that can vary depending
on their resilience properties. Placement rules either represent
different types and levels of redundancies, or different storage
tiers, or a combination of these.

Object storage systems are extensible: in addition to the
usual read and write methods of objects, new methods can be
introduced by adding new object classes that are implemented
on top of an abstract local storage interface. As Sevilla et al.
show [19], Ceph/RADOS in 2016 had added to its mainline
over 15 new object classes with a total of close to 150
additional methods that were introduced over the span of six
years (see Figure 1). These methods have read/write access
to the object’s state that is locally maintained in a key/value
store and a blob store within a name space private to the
object (objects cannot access the state of other objects stored
on the same storage server through the local key/value or
blob store). To add a new method, a deployed Ceph/RADOS
storage system needs to be rebooted. In many deployments,
this is an unacceptable interruption of service. To avoid this
interruption, the Ceph community created object classes that
embed interpreters and VMs that allow extensibility without
reboot. Examples are Python, Lua, and very lightweight and
fast Javascript engine VMs such as V8 isolates.

160 12000

Classes)
Methods /
LOC (C++)

10000

BOOD

ode

6000

Interface Count
o

Lines of

=) I :

=— = -' |

2011

4000

14

013 20

0. ——
2010

2012

Sample Date

Fig. 1: The number of object classes and object methods as
well as the total lines of code dedicated to new methods

committed to Ceph’s mainline from 2010 through 2016 [19]

The extensibility of object storage systems implements a

43

form of computational storage and allows the introduction
of highly-efficient serialization libraries like FlatBuffers or
Apache Arrow and thereby enables storage systems to manage
structured data and its physical design. This gives rise to
the following implications: (1) Structured data management
in storage systems enables offloading of work to storage
via an application’s external data source interface. Relational
database management systems can offload relational access
methods to storage via their external table interface. Similarly
for the cluster computing framework Apache Spark that also
offers an external data source interface that supports offload-
ing. The widely used access library HDF5 [11] offers an
external data source interface called “Virtual Object Layer”
which also allows offloading. Each of these are examples
of systems with interfaces that can be used to offload work
to storage. (2) Since object storage systems can be scaled
to a large number of servers, offloading of access methods
provides a powerful scale-out mechanism. (3) Offloading of
access methods removes the need to accumulate increasingly
inadequate assumptions about storage systems (see the study
of Trivedi et al. [22] that showed that even the assumptions in
modern access libraries like Parquet can significantly diminish
performance).

IV. TOWARD PHYSICAL DESIGN MANAGEMENT WITH
CEPH

Physical design management aims to provide a flexible
means of defining and reconfiguring physical designs. Recon-
figurations are done to increase the efficiency of data access for
input workloads by considering the existing geometry of phys-
ical designs. When changes are driven by on-line workload
analyses, changes in the workload may trigger a mechanism
to compare the performance of the current workload (or
sliding window over the recent workload) on a relevant subset
(enumeration) of physical designs under consideration. A cost-
benefit analysis is performed for executing the given workload
over the current and potential designs including the cost to
transform (i.e., reconfigure) to the potential new design. If a
new design is selected, then a transformation plan is created
and executed in a rolled-out fashion. The transformation roll-
out allows the current workload to enjoy incremental benefits
and future workloads with the same properties will enjoy the
full benefits. Additionally, the flexibility of the physical design
management infrastructure allows the ability to control the rate
of transformation roll-out to decrease the impact of shifting
storage resources away from other concurrent processes.

All transformations operate over serialization libraries but
below the layer where applications access datasets. The strat-
egy makes both transformation execution and results transpar-
ent to the application.

a) Serialization libraries: In this paper we use Flat-
Buffers, FlexBuffers, and Apache Arrow.

FlatBuffers [3] is a fast in-memory serialization library
which supports arbitrary data schemas. FlatBuffers are struc-
tured as ordered contiguous sequences of bytes such that
the fields of the data structure have pre-determined memory

Physical Design
o Management .o

Orchestration

Storage Clients

Storage Servers

tragsformation

Distributed transformations

Physical Designs

Fig. 2: Physical designs are managed via local and distributed
transformations that are identified and orchestrated at the
storage client layer and executed in the storage server layer.

allocations tied to the data types of fields specified in the
schema. The structures are built with minimal additional
storage overhead for FlatBuffer-specific metadata. FlatBuffers
are similar to ProtocolBuffers, but the difference is FlatBuffers
allows access of individual elements without deserializing the
entire structure, which is a requirement for ProtocolBuffers.

FlexBuffers [4] is a fast serialization in-memory library
which complements FlatBuffers. While a pure FlatBuffers
schema requires knowing the types of data to store in advance,
FlexBuffers allows storage of arbitrary types, which must be
interpreted at run-time. FlexBuffers complement FlatBuffers
and a FlatBuffer schema may include FlexBuffer-defined field.
The latter characteristic is core to the FlatBuffer-FlexBuffer
Rows format utilized in our physical design management
prototype.

Apache Arrow [5] is a serialization library for flat and hier-
archical data. Arrow is optimized for in-memory column-wise
storage and includes a number of facilities for automatic data
compression. Defining structures in Arrow has the constraint
similar to FlatBuffers wherein the data types of the schema
cannot be dynamically defined.

We distinguish local transformations within an object that
are always local to a server from distributed transformations
that usually form a DAG of data streams between source
and target objects and that usually span multiple servers and
therefore incur network traffic. We also distinguish between
primary transformations that modify the physical design of
the primary data from secondary transformations that “tune”
the physical design by adding or modifying secondary data
like indices while leaving the physical design of the primary
data unmodified.

b) Local transformations: have the advantage of not
causing any network traffic (except for redundancy updates)
and the disadvantage of keeping all primary and secondary
transformations within the object boundary, e.g. for tabular
data row-to-column transformations the length of columns are
limited by the number of rows stored in the local object, or an
index only points to local data. Local primary transformations
move part or all of the data of an object into a new physical
design within the object. That means the identity of the object

44

is preserved, the changes are persisted according to the redun-
dancy and placement policies of the object’s pool, and network
traffic is only due to redundancy (i.e. no network traffic if there
is no redundancy). Local secondary transformations create
secondary data that speeds up access under certain workloads.
Creating local indices or statistics are both examples of a local
secondary transformation. This transformation also preserves
object identity and maintains redundancy and placement of the
object.

c¢) Distributed transformations: are a DAG of streams
creating the new physical design in a new set of objects from
the data stored in a set of objects with the original physical
design. Distributed transformations have the advantage of
parallel execution across multiple servers and can produce
global transformations, e.g. for tabular data row-to-column
transformations the length of columns is only limited by the
total number of rows across all objects of the dataset, or
an index can be defined over the entire dataset. Distributed
primary transformations create a sequence of streams that pull
filtered data from each source object in parallel for each target
object. These streams are implemented with a generalized
version of Ceph’s copy_from command that in its original
version allows a Ceph client to delegate to Ceph/RADOS
the copying of the entire content from a source object to a
target object, replacing all content at the target object. The
generalized version allows calling serialization library access
methods at the source object and adding the result at the target
object without necessarily replacing all content that is already
there, also using serialization library access methods.

V. EVALUATION

In this section, we present an experimental evaluation of our
Physical Design Management framework in Ceph for both data
transformations and pushdown computation within the storage
layer. Section V-A describes the experimental methodology.
Section V-B presents a comparison of formatted dataset sizes
to highlight the size trade-offs among our serialization formats.
Section V-C compares query performance with and without
pushing down processing (i.e., select, project, etc.) into storage
for our structured row format (FlatBuffers) and our structured
column format (Arrow). We then further drill down into this
experiment in Section V-D to show the resources consumed
by a client and server machine with and without pushdown
processing to highlight the resource trade-offs for offloading
processing to storage. In Section V-E we compare approaches
for transforming a dataset from row to column formats via
local transformation (no data movement), distributed transfor-
mation (data movement stays entirely within the storage layer),
and a representative approach for client-side transformations
that performs transformations outside the storage layer. Lastly
we examine the benefits transformations that organize columns
differently on disk by grouping all columns together or inde-
pendently.

A. Methodology

Datasets and workloads. We consider two datasets. One is
the LINEITEM table from the standard TPC-H benchmark.
The LINEITEM table schema consists of 15 cols including ints,
floats, chars, dates, and strings/text schema. This dataset was
randomly generated using the TPCHDATAGEN program and has
750 million rows. Our second dataset is inspired by IoT/sensor
datasets and consists of 100 columns of identical types (32-bit
integers). This dataset was randomly generated with uniform
distribution of values 1 — 10000 and has 250 million rows.

Our workloads consist of simple selection and projection
queries on each dataset with selectivities 1%, 10%, and 100%.
For LINEITEM, we use the float column extended_price,
and for 100COLS dataset, we use the first integer column. The
selection query on the LINEITEM dataset is given as SELECT
* FROM lineitem WHERE extended_price > X,
where X results in 1,10, and 100% selectivity. The selection
query on the 100COLS dataset is given as SELECT » FROM
100cols WHERE col0 >Y, whereY resultsin 1,10, and
100% selectivity. All selections and projections are applied us-
ing the corresponding FlatBuffer or Arrow APIs with standard
comparison operators on each value.

Execution environment. All of our experiments are per-
formed on Cloudlab [10], which is a bare-metal-as-a-service
environment for scientific research. We create clusters of a sin-
gle machine type, “c220g5”, with the following configuration:
two Intel Xeon Silver 4114 10-core 2.20 GHz CPUs, 192GB
ECC DDR4-2666 RAM, one 1TB 7200 RPM 6G SAS HDD,
one Intel DC S3500 480 GB 6G SATA SSD, dual-port Intel
X520-DA2 10Gb NIC (PCIe v3.0, 8 lanes), and onboard Intel
1350 1Gb per node. All of our object storage data resides on
the HDD of these machines. Each of our configuration profiles
is available publicly (Appendix A). Each profile consists of a
single client machine and a number of storage servers — Ceph
Object Storage Devices (OSDs).

The client machine is where the client driver application (in
this case our query driver, or similarly a database application)
is installed and executes. This machine has no data storage.
All storage-side query processing and transformations are
performed on the storage servers only. All client-side query
processing and transformations are performed only the client
machine within the driver, representing a system where the
storage does no extra work for either physical design or
processing.

Systems. We use Ceph (Luminous version) with our Sky-
hook Data Management [15] extensions that can perform
transformations and basic pushdown processing over struc-
tured data using the FlatBuffers and Arrow serialization li-
braries. All of our extensions are implemented as RADOS
library object classes.

B. Dataset sizes

Table I shows the dataset sizes for each schema and data
format that we evaluate. Datasets consist of 10,000 objects
based on 10MB raw data in each object, resulting in 100GB
of raw data in each dataset. When each object is converted to

45

Schema Format Size in GB | Number of rows
LINEITEM | flatbuffer 210 750 million
LINEITEM | arrow 103 750 million
LINEITEM | raw 100 750 million
100coLs flatbuffer 85 250 million
100coLs arrow 188 250 million
100coLs raw 100 250 million

TABLE I: Dataset sizes for our two datasets in each format.
Each dataset consists of 10,000 uniformly-sized objects.

FlatBuffer or Arrow format, the final sizes change as indicated
in Table L.

Table I shows that our FlatBuffer format increases the
LINEITEM data size by 2.1x whereas Arrow format is opnly
slightly larger than raw size. Interestingly, almost the inverse is
true for the 100COLS dataset where FlatBuffer format is nearer
to raw size (in fact slightly smaller). One possible reason is
due to the way FlexBuffers (each row in our FlatBuffer format
is actually stored as a FlexBuffer) store integers, using only
the minimum number of bits for the given value. Because
our integers in 100COLS dataset range from 1 — 10000 the
FlexBuffer may be using 14 only bits per integer instead
of 32 as would be done with Arrow. This is one benefit of
FlexBuffers, although the drawback is that updating in place
is not possible unless the new value fits squarely within the
previous space.

C. Impact of transformations on query performance

In this section we evaluate the performance of our physical
design management transformations in order to show the ben-
efits and tradeoffs our approach provides for query processing,
such as for computational storage. We also evaluate resources
consumed for pushdown query processing (performed entirely
within the storage servers) versus all processing done by the
client driver application. When all processing is performed
by the client application, the storage system functions in a
traditional way simply returning the entire object as a standard
read using LIBRADOS (no custom object class processing is
applied).

Figure 3 shows query performance with 8 storage servers
for the LINEITEM dataset at various selectivities. The NO
PROCESSING value indicates the standard LIBRADOS read
where data is returned directly to the client. This represents
traditional storage system usage, so we have added a horizontal
line as a baseline. The top figure represents FlatBuffer format
and bottom figure Arrow format.

For each format, the various selectivities have nearly the
same performance as the baseline, indicating that the overhead
of the corresponding APIs to apply filters is minimal. As
we show next in Section V-D, this is likely due to the
disk speed (HDD) or network being the bottleneck since the
processing overhead in terms of CPU is quite small in this
case. Comparing FlatBuffer format with Arrow format shows
that Arrow is faster to process by a large margin, due in part
to the LINEITEM dataset size for Arrow as shown in Table I.
In every case, the 1%, 10%, 100% selectivity, storage-side

FLATBUFFER-FLEXBUFFER FORMAT

B NO PROCESSING @ SELECTIVITY 1% 10% 100%

300

@
2

S 200
(9]
8
[
E
=

§ 100
5
]
a

0

storage-side processing client-side processing
ARROW FORMAT
B NO PROCESSING B SELECTIVITY 1% 10% 100%

300
@
©
c

8 200
&
[
E
=

§ 100
5
]
a

0

storage-side processing client-side processing
Fig. 3: Execution time with 8 Storage Servers (OSDs) row
format (top) and column format (bottom).

(pushdown) processing performs slightly worse than client-
side processing due to the need to reassemble the matching
results into the corresponding format (FlatBuffer or Arrow)
to be returned to the client. The 100% selectivity is the worst
since the storage must apply the predicate filter to every row in
the dataset, and then since all rows pass, it must reassemble the
exact same data to be returned to the client. Another option to
reduce the extra cost for queries that select most of the data in
a given partition is to simply return the original data structure
as-is but mark the rows that do not match as “deleted” or
similar. This overhead shows the need for a cost model based
on statistics that can decide whether or not to pushdown the
selection processing into the storage layer, an area of future
work for us.

D. Machine resources consumed during query processing

Figures 4 and 5 show the CPU and network resources
consumed by a client and server machine during the first
60 seconds of query processing at the 1% selectivity shown
in Figure 3 using the Arrow format. Each figure reports the
resources used on the client and one of the 8 storage servers,
without pushdown processing (top row) and with pushdown
processing (bottom row). The x-axis of both figures denotes
1 second intervals for the first 60 seconds of the query. The
y-axis in Figure 4 indicates CPU as percent usage, while in

46

PERCENT
PERCENT

40 60 0 20 40 60

ELAPSED TIME (seconds) ELAPSED TIME (seconds)

PERCENT
PERCENT

0 0 Lo bt s p st
0 20

40 60 0 20 40 60

ELAPSED TIME (seconds) ELAPSED TIME (seconds)

Fig. 4: (a) client machine (b) one storage server
CPU usage during first 60 seconds of 1% selectivity query
without pushdown processing (top), and with pushdown pro-
cessing (bottom).

Figure 5 it indicates network send and receive in MBps, both
as reported by the dstat utility.

Figure 4 (top row) shows the CPU consumed by the client
machine (a) without pushdown processing is much higher
than the storage server (b). This is because the client is both
receiving all of the data from the storage servers as well as
applying the processing. With pushdown processing, Figure 4
(bottom row) shows a dramatic reduction in client CPU usage
(a) , with very small corresponding increase in storage server
CPU usage (b). This in part due to fewer data packets being
sent to the client since only 1% of the data passes the filter, as
well as distributing the processing from the client to all 8 of
the storage servers. Figure 5 confirms that without pushdown
processing (top row), the client (a) is receiving much more data
from the storage server (b) than with pushdown processing
(bottom row). This result indicates that pushdown processing
using our structured formats and their corresponding APIs has
very little overhead on the storage servers in this example, for a
simple selection filter applied to every row of a given column.

E. Transformations

Here we compare several approaches to transform data
within our physical design management framework. Because
row-oriented storage is write-optimal while column-oriented
storage is known to be beneficial for certain workloads such
as analysis queries, here we highlight the capability of our
system to perform these transformations dynamically from row
to column orientation within storage. We compare local trans-
formations (no network traffic), distributed transformations
(within storage traffic only), and client-side transformations
(network traffic back and forth between storage and client). In
each approach, we only transform the first 1,000 out of 10,000
objects representing a possible schedule of a transformation
plan that acts on subsets of the objects in turn. This is
because non-local transforms are required to read-many-write-
one object, for each column, which injects a very high amount
of work and traffic into the storage system and thus indicates

+ RECV (MB) = SEND (MB)

MB
MB

0 20 40 60 0 20 40
ELAPSED TIME (seconds) ELAPSED TIME (seconds)

+= RECV (MB) = SEND (MB)

MB
MB

0 20 10 60 0 20 40

ELAPSED TIME (seconds) ELAPSED TIME (seconds)

Fig. 5: (a) client machine (b) one storage server
Network usage during first 60 seconds of 1% selectivity
query without pushdown processing (top), and with pushdown
processing (bottom).

the need for a transformation plan schedule that can be rolled
out over time as we mention in the “research challenges”
of Section II. We report results for the 8 OSDs cluster, the
same trends were observed with the 4 OSDs cluster and so
are omitted for brevity.

Figure 6 reports the time to transform from row to column
with three approaches. The first result “Local” represents a
local transformation (Section IVb) on each object from row
to column format, and no data travels over the network. At
the end of this transformation phase, all transformed objects
contain column formatted data.

The second result “Distributed” is a distributed transforma-
tion (Section IVc) which is done in two phases. First a local
transformation is performed, and then one column (co0l10) is
collected into a single target object. We use our modified
Ceph copy_from command where a single target object
collects data from multiple source objects (e.g., col0 from
objects 1-m) instead of a single source object as is otherwise
done when creating replica objects. Here there is network
traffic between objects within the storage layer only, however
copying data to replicas is a typical function of distributed
storage system for replication tasks. As future work, these two
phases could also be combined into a single transform inline
during copy_ from. At the end of this transformation phase,
one object (target) contains all the data from a single column.

The third result “Client side” represents a more traditional
way to transform data, where the transformation work is
performed outside of the storage system. In this case, all of
the data is read by the client, the transformation is performed,
and one column of data (col0) is written back to a single
target object. The increased network traffic of this approach
has a large impact on execution time.

Lastly we present results when columns are organized
differently within each object, for the local transform case.
The physical design transformation plan may store all columns
together within the same data structure on disk, or subsets of
columns independently or grouped together (i.e., co-located)

47

Transform Row to Column Format

200
@
€ 150
[$]
[0}
&2
[0}
g 100
'_
c
S
g 50
[}
[0}
>
w
0

Local Distributed Client-side

Fig. 6: Time to transform from FlatBuffer-FlexBuff (row) to
Arrow (col) on an 8 OSD cluster using the 100COLS dataset.

SELECT extended_price FROM lineitem

250

200

100

50

Execution Time (seconds)

B Before transform B After transform
After transform with PROJECT extended_price

Fig. 7: SELECT single column before and after transform all
cols, and after transform with PROJECT only a single column,
on an 8 OSD cluster using the LINEITEM dataset.

on disk, for instance when certain columns are accessed more
frequently by the workload. Here we again use the 8 OSDs
cluster size as in our previous row and column comparisons.

Figure 7 reports the execution for a query that selects
only one column from the original row format (FlatBuffer-
FlexBuffer), from the transformed to column format (Arrow)
with all columns grouped together, and from the transformed
to column format with transform PROJECTing each column
into its own data structure (Arrow) on disk. The time to
SELECT the extended_price column is highest before
transform from row format at 237 seconds, then after transform
to column format the time is reduced to 107 seconds, similar
to our previous row versus column results in Figure 3. After
transforming the extended_price column into its own
data structure on disk, the execution time to select that single
column drops to just 16 seconds. This experiment high-
lights the potential benefit that physical design management
in storage can provide for query processing such as with
computational storage techniques.

VI. RELATED WORK

As noted in Section II, physical design management draws
similarities with physical design tuning. There has been a
long line of research in both offline [28] and online [§]
physical design tuning for databases, including reorganizing
data differently across two systems [14] for workload co-
processing. However, physical design management subsumes
traditional database physical design tuning by introducing
an expanded space of design elements as well as enabling
the storage layer to directly implement physical designs.
Transforming between row and column orientations and the
idea of supporting both row and column access are not new.
For example, Teradata [6] and Greenplum [1], can shift data
between column and row storage and allow both row and
column access. While our system can shift and access data
between row and column formats, we focus on more general
physical design capabilities, performed directly within the
storage layer rather than a custom file system or database
application.

Efforts toward hardware-embedded database functional-
ity [9], [27] fall within the computational storage paradigm
and are similar to ours in terms of pushing down higher-
level processes below the application layer, but address query
processing tasks rather than physical design. In our work,
the physical design can be informed by query cost models
and the storage can be reconfigured dynamically to adjust to
changing workloads, with a goal of improving performance
of pushdown computations. Semantically-aware storage [20]
offers an approach to software-based storage processing that
focuses on using database application semantics to govern
mapping out bytes in storage to optimize data access and
availability. In contrast, physical design management operates
at a higher level focusing on selecting beneficial structured
data formats, auxiliary data structures, local organization of
formatted data within an object, and global dataset partitioning
across potentially many objects and devices.

Very recent work [13] has proposed a continuum of learned
data structure designs for key-value stores including automat-
ically synthesized data structures, highlighting a large design
space that considers data access and layout options, among
other choices. Their work is more specific to data structure
choices based on low-level primitives such as block size and
memory budgets for candidate structures whereas we focus
on higher level physical design choices. However, provided a
good cost model for candidate data structures, such methods
could possibly inform physical design reconfigurations within
storage in our work as well.

VII. CONCLUSION AND FUTURE WORK

We have presented our initial work toward the concept
of physical design management directly within the storage
system, along with several research challenges. Our approach
considers the typical elements of database physical design,
but expands these to include additional elements relevant
to the storage system. We described how physical design
transformations may be done in a local or distributed fashion,

48

synchronously or asynchronously, or via a scheduled roll-out
of a computed transformation plan, though we leave such a
plan for future work. Although our work includes aspects of
computational storage, one explicit goal of physical design
management in storage is to enhance both the performance and
type of computations that can be performed within storage by
reorganizing the physical data configuration of a dataset across
the entire storage system.

A key aspect of our design includes utilizing fast in-
memory serialization libraries such as FlatBuffers and Arrow
to store formatted data structures within objects that retain
data semantics and are aware of their current format. Thus
objects can use the corresponding APIs available for pro-
cessing or reorganizing themselves as directed by a physical
design management orchestration layer. Crucially this object-
local knowledge helps to avoid updating the current state
(e.g., format, organization on disk, etc.) of an object to the
application layer each time a physical design change occurs.
This also enables interesting scheduling options for rolling out
transformation plans.

Using an object storage system, we evaluated physical
design changes between row and column oriented data formats
using fast in-memory serialization libraries. We also showed
the benefits of different formats for query processing as well
as the tradeoffs among resources consumed by the client
application machine and storage servers during processing and
transformations. Our evaluation showed the CPU resources
used by the library APIs during query processing in storage
was small, and the network traffic was greatly reduced for
highly selective queries. We also showed the flexibility of
our approach for the given test queries performing select
and project over different datasets, different data formats, and
various selectivities.

An area of future work is to examine the resource impact of
design transformations and processing on storage servers with
many concurrent workloads. Additional future work includes
developing cost models to help explore how different storage
media such as HDDs, SSDs and NVMe can affect the tradeoffs
among physical designs and the resulting impacts on query
processing.

Acknowledgements. This work was supported in part by
NSF grants OAC-1836650, CNS-1764102, and CNS-1705021,
and by the Center for Research in Open Source Software
(cross.ucsc.edu).

REFERENCES

[1] Pivotal Greenplum (6.0). Greenplum documentation. Accessed: Aug. 17,
2019. [Online]. Available: https://gpdb.docs.pivotal.io/6-0/admin_guide/
ddl/ddl-storage.html.

Hierarchical Data Format. Web Page. www.hdfgroup.org/HDF5/.
Google FlatBuffers documentation. https://google.github.io/flatbuffers/,
Sept 2015. Accessed: 2019-08-01.

Google FlexBuffers documentation. https://google.github.io/flatbuffers/
flexbuffers.html, Sept 2015. Accessed: 2019-09-08.

Apache Arrow documentation. https://arrow.apache.org/, Feb 2016.
Accessed: 2019-08-01.

[2]
[3]

[4]
[5]

[6]

[7]

[9]

[10]

[11]

(12]

[13]

[14]

[15]
[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

D. Abadi. Hybrid row/column-stores: A general and flexible
approach. [Online] https://downloads.teradata.com/database/articles/
hybrid-rowcolumn-stores-a- general-and-flexible-approach, Mar 2015.
Accessed: 2019-09-08.

Apache Software Foundation. The Apache® Software Foundation
announces Apache Arrow™ as a top-level project. February 17 2016.
N. Bruno and S. Chaudhuri. An online approach to physical design tun-
ing. In 2007 IEEE 23rd International Conference on Data Engineering,
pages 826-835. IEEE, 2007.

J. Do, Y.-S. Kee, J. M. Patel, C. Park, K. Park, and D. J. DeWitt. Query
processing on smart SSDs: Opportunities and challenges. In Proceedings
of the 2013 ACM SIGMOD International Conference on Management
of Data, pages 1221-1230, 2013.

D. Duplyakin, R. Ricci, A. Maricq, G. Wong, J. Duerig, E. Eide,
L. Stoller, M. Hibler, D. Johnson, K. Webb, A. Akella, K. Wang,
G. Ricart, L. Landweber, C. Elliott, M. Zink, E. Cecchet, S. Kar, and
P. Mishra. The design and operation of CloudLab. In Proceedings of the
USENIX Annual Technical Conference (ATC), pages 1-14, July 2019.
M. Folk, A. Cheng, and K. Yates. HDF5: A file format and I/O library
for high performance computing applications. In Proceedings of SC’99,
Portland, OR, November 13-19 1999.

B. Hendrickson. The day after tomorrow: The looming post-exascale
crisis. In Keynote at IPDPS 2018, Vancouver, BC, Canada, May 21-25
2018.

S. Idreos, N. Dayan, W. Qin, M. Akmanalp, S. Hilgard, A. Ross,
J. Lennon, V. Jain, H. Gupta, D. Li, et al. Design continuums and
the path toward self-designing key-value stores that know and learn. In
CIDR, 2019.

J. LeFevre, J. Sankaranarayanan, H. Hacigumus, J. Tatemura, N. Poly-
zotis, and M. J. Carey. MISO: souping up big data query processing
with a multistore system. In Proceedings of the 2014 ACM SIGMOD
international conference on Management of data, pages 1591-1602.
ACM, 2014.

J. LeFevre and N. Watkins. Skyhook: Programmable storage for
databases. In Vault’19, Boston, MA, Feb. 2019. USENIX Association.
M. Mesnier, G. R. Ganger, and E. Riedel. Object-based storage. I[EEE
Communications Magazine, 41(8), Aug. 2003.

D. Robinson. What’s up with computational storage. Web Page.
blocksandfiles.com/2019/06/14/computational-storage-market-research/,
June 14 2019.

W. Schroeder, K. Martin, and B. Lorensen. The Visualization Toolkit.
Kitware, 2006.

M. A. Sevilla, N. Watkins, 1. Jimenez, P. Alvaro, S. Finkelstein,
J. LeFevre, and C. Maltzahn. Malacology: A programmable storage
system. In EuroSys 17, Belgrade, Serbia, April 23-26 2017.

M. Sivathanu, L. N. Bairavasundaram, A. C. Arpaci-Dusseau, and R. H.
Arpaci-Dusseau. Database-aware semantically-smart storage. In FAST,
volume 5, page 18, 2005.

M. Stonebraker, C. Bear, U. Cetintemel, M. Cherniack, T. Ge,
N. Hachem, S. Harizopoulos, J. Lifter, J. Rogers, and S. Zdonik. One
size fits all?—part 2: Benchmarking results. In 3rd Biennial Conference
on Innovative Data Systems Research (CIDR), Jan. 2007.

A. Trivedi, P. Stuedi, J. Pfefferle, A. Schuepbach, and B. Metzler. Albis:
High-performance file format for big data systems. In USENIX ATC ’18,
2018.

W. van Oortmerssen. Flatbuffers: A memory-
efficient serialization library. Web Page. android-
developers.googleblog.com/2014/06/flatbuffers-memory-efficient.html,
June 17 2014.

S. A. Weil, S. A. Brandt, E. L. Miller, D. D. E. Long, and C. Maltzahn.
Ceph: A scalable, high-performance distributed file system. In OSDI’06,
Seattle, WA, November 2006.

S. A. Weil, S. A. Brandt, E. L. Miller, and C. Maltzahn. CRUSH:
Controlled, scalable, decentralized placement of replicated data. In SC
’06, Tampa, FL, November 2006. ACM.

S. A. Weil, A. Leung, S. A. Brandt, and C. Maltzahn. Rados: A fast,
scalable, and reliable storage service for petabyte-scale storage clusters.
In Proceedings of the 2007 ACM Petascale Data Storage Workshop
(PDSW 07), Reno, NV, November 2007.

S. L. Xi, O. Babarinsa, M. Athanassoulis, and S. Idreos. Beyond
the wall: Near-data processing for databases. In Proceedings of the
11th International Workshop on Data Management on New Hardware,
DaMoN’15, pages 2:1-2:10, 2015.

49

[28] D. C. Zilio, J. Rao, S. Lightstone, G. Lohman, A. Storm, C. Garcia-
Arellano, and S. Fadden. DB2 Design Advisor: integrated automatic
physical database design. In Proceedings of the Thirtieth international
conference on Very Large Data Bases-Volume 30, pages 1087-1097.
VLDB Endowment, 2004.

APPENDIX

A. Reproducibility

All experimental results included in the evaluation are
scripted for reproducibility. Running the experiments requires
obtaining a Cloudlab [10] account and obtaining access to a
Cloudlab-supported project. See instructions for requesting an
account on the Cloudlab website:

https://cloudlab.us/

Note reproducing experiments will require adding an SSH key from your
machine to your list of Managed Keys in the Cloudlab.
Reproducing evaluation experiments breaks down into three major steps:
1) Spin up a Cloudlab cluster instance using one of the project profiles
2) Run the setup and install scripts associated with the kind of experiments
you wish to run.
3) Choose and run the experiment scripts.
Detailed instructions for reproducing the evaluation experiments are located
here:

https://github.com/KDahlgren/pdswl9-reprod/wiki

