
Towards Faster Columnar Data
Transport Using RDMA

Jayjeet Chakraborty
UC Santa Cruz

Modern Datacenter Hardware

● Fast memory devices
○ NVMe
○ PCIe5, DDR5, CXL

● Fast networking infrastructure
○ ConnectX-5/6 NICs
○ Upto 200 Gbps bandwidth

● Fat CPUs
○ Intel Xeon
○ Intel Sapphire Rapids

Data Processing Architecture using CS

NICs; Connect X 5/6
(Upto 200 Gbps)

Laptop NICs (1 Gbps)

Data Processing Architecture using CS

Data Processing Architecture using CS

Inherently
TCP/IP-based

Does not leverage
modern network

protocols
Serialization

What is Serialization ?

Column Buffer
02

Column Buffer
01

Column
Buffer 03

The process of converting 2D tables/record batches into network transferable
format

What is Serialization ?

Column Buffer
02

Column Buffer
01

Column
Buffer 03

Column Buffer
01

Column Buffer
02

Column
Buffer 03

 3 Copies

Copy the individual buffers holding tabular data into a single-contiguous buffer as
required by TCP/IP

Userspace

Userspace

What is Serialization ?

Column Buffer
02

Column Buffer
01

Column
Buffer 03

Column Buffer
01

Column Buffer
02

Column
Buffer 03

 3 Copies

Copy the individual buffers holding tabular data into a single-contiguous buffer as
required by TCP/IP

Userspace

Userspace

Column Buffer
01

Column Buffer
02

Column
Buffer 03

Userspace

 1 Copy Column Buffer
01

Column Buffer
02

Column
Buffer 03

Kernel Space

Why is Serialization bad ?

● Unwanted memory copies
● Wastage of CPU cycles
● Added overhead for Computational storage

Why is Serialization bad ?

● Unwanted memory copies
● Wastage of CPU cycles
● Added overhead for Computational Storage

How much can we eliminate the
serialization overhead ?

Possible Solution

● Eliminate the multiple rounds of memcpy
● Use user-space networking libraries
● Leverage HPC communication frameworks that leverage faster

networking protocols
○ Mochi Thallium (Argonne National Labs)

■ Supports Infiniband; VPI-enabled ConnectX cards has both Ethernet and Infiniband
modes

■ Uses user-space RDMA libraries; libfabric and libibverbs

http://mochi.readthedocs.io

Mochi Thallium

Scatter
Gather

Server BulkClient Bulk

DMA

Protocol Design

Initial Evaluations (with DuckDB engine)

Higher Selectivity, Smaller result size

Initial Evaluations (with DuckDB engine)

RDMA requires memory pinning, pre-allocation,
bookkeeping, adding overhead for point data transfers.

How to solve that ?

Higher Selectivity, Smaller result size

Thank You ! (jayjeetc@ucsc.edu)

mailto:jayjeetc@ucsc.edu

